This article was downloaded by: [Tomsk State University of Control

Systems and Radio]

On: 23 February 2013, At: 08:26

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954

Registered office: Mortimer House, 37-41 Mortimer Street, London W1T

3JH, UK

Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gmcl16

Thermal Decomposition of Cholesteryl Oleyl Carbonate

G. D. Dixon ^a & L. C. Scala ^a

^a Westinghouse Research Laboratories, Pittsburgh, Pa., 15235

Version of record first published: 21 Mar 2007.

To cite this article: G. D. Dixon & L. C. Scala (1970): Thermal Decomposition of Cholesteryl Oleyl Carbonate, Molecular Crystals and Liquid Crystals, 10:3, 327-330

To link to this article: http://dx.doi.org/10.1080/15421407008082818

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or

damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Molecular Crystals and Liquid Crystals. 1970. Vol. 10, pp. 327-330 Copyright © 1970 Gordon and Breach Science Publishers Printed in Great Britain

Thermal Decomposition of Cholesteryl Oleyl Carbonate

G. D. DIXON and L. C. SCALA

Westinghouse Research Laboratories Pittsburgh, Pa. 15235

Received December 23, 1969; in revised form March 2, 1970

Abstract—Cholesteryl oleyl carbonate decomposes spontaneously, above its melting point, to liberate CO₂ independently of the atmosphere. In the presence of O₂, CO is evolved in appreciable quantities due to oxidative attack which probably occurs at the olefinic bonds.

The stability of cholesteric liquid crystals has been the object of little investigation. (1,2) O'Connor and Nace (1) pyrolyzed cholesteryl ester carbonates and xanthates above 150°C, and showed that decomposition occurred by a first order reaction, possibly via a concerted 6-membered ring intermediate.

Most of the other work has been directed towards examining the effects of various environments upon the performance of liquid crystals as sensors in electro-optical devices. These sensors contained cholesteryl oleyl carbonate (OCC) and preliminary experiments indicated that this material decomposes to liberate CO₂ even at room temperature. However, it is necessary to include OCC in the materials used in these sensors in order to have a sensor which can be used at room temperature. The field-sensitive component of these sensors, cholesteryl chloride (CC), has a crystal-liquid crystal transition at 96°. Above this temperature, CC decomposes to liberate an acidic vapor, presumably HCl. Hence, the lowering of the liquid crystal range by OCC is also presumed to reduce or prevent the CC decomposition.

The effect of prolonged use of this material at 39°C has now been investigated *in vacuo*, in oxygen (a radical source), and in nitric oxide (a radical inhibitor). This temperature was chosen as being close to that to which the sensor would be exposed in use.

The OCC (obtained from Eastman Chemicals) was recrystallized from methanol until differential thermal analysis (DTA) showed only

two transition points above -10° C. Before recrystallization, endothermic peaks were obtained at 2.5°, 7.5°, and 17° on heating. After recrystallization, only two endotherms were obtained at 17.5° and 33°. The material was then stored in a refrigerator until used.

Samples of the material (ca. 0.1 g) were weighed into glass boats which were placed in glass tubes (12.0 cm × 1.0 cm I.D.) having a break seal at one end and a sealing constriction at the other. tube was attached to a vacuum line and degassed at ca. 10⁻⁴ torr (measured with a McLeod gauge) for approximately 1 hour. tubes were then sealed under vacuum, others filled with oxygen or nitric oxide to about 17 mm Hg and then sealed. The tubes were aged in the dark at 39° ± 1°C. Duplicate samples were removed every 3 weeks and sealed to a manifold inlet attached to a mass spectrometer (CEC 21-103C). The break seal was opened and the gases evolved during the heating period were analyzed. The partial pressures of CO and CO, liberated were calculated from the peak intensities of m/e 28 and 44. From the perfect gas law, the numbers of moles of CO and CO2 evolved from each sample were determined. The amount of CO₂ liberated in the various atmospheres was plotted, as a percentage of the sample weight, against time of aging. Least squares analysis of the data gave a straight line, as shown in Fig. 1.

This graph indicates that the rate of thermal decomposition of OCC is independent of the environment, agreeing with O'Connor's (i) findings. Obviously, decomposition must be occurring at the carbonate linkage for CO₂ to be produced in the presence of NO or in a vacuum.

In the presence of O_2 , oxidative decomposition occurs at other sites liberating CO, this being the predominant reaction. Figure 2 shows the evolution of CO, as a percentage of the sample weight, plotted against aging time. The results of duplicate tests for CO evolution (circles) and oxygen consumption (squares) are shown with the evolution of CO_2 (dotted line) for comparison. The behavior of the graph can be explained by considering an initial induction period followed by rapid evolution of CO. Termination of this evolution coincides with total consumption of the O_2 .

The most likely points of oxidation to produce CO are the olefinic bonds (one each in the cholesteryl and oleyl moieties). Significantly, no CO was produced in the presence of NO. Analysis of N₂/Ar ratios

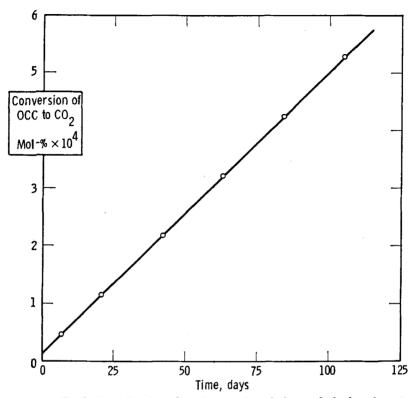


Figure 1. Evolution of carbon dioxide on aging cholesteryl oleyl carbonate.

show that traces of air had been retained in the OCC samples aged in vacuo; this accounted for small amounts of CO among the volatile products.

The most important conclusion to be obtained from this work is that OCC, in the liquid crystal or liquid states, will decompose spontaneously whatever its environment. This rate of decomposition is small; in vacuo it is of the order of 1×10^{-5} mol% OCC per day, to give a variety of volatile products. Even so, this rate is still too large to allow this material to be used as the principal sensor in an evacuated chamber such as an electron beam device, where the upper pressure limit is about 10^{-5} torr, unless the device is continuously evacuated.

On the other hand, decomposition in an O₂ atmosphere can be considerable. Appreciable quantities of this gas are retained by the

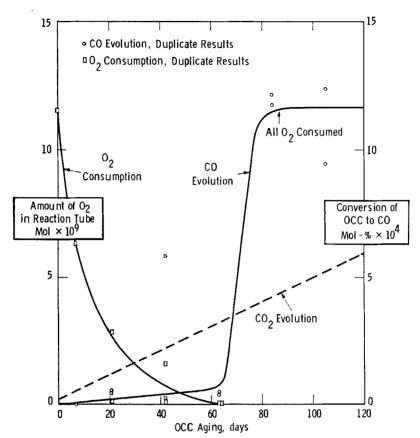


Figure 2. Evolution of carbon monoxide from cholesteryl oleyl carbonate aged in oxygen.

substrate at 39°C as non-volatile oxidation products and relatively large volumes of CO are evolved as a consequence of this process.

Acknowledgement

This work was supported by the Advanced Research Projects Agency of the Department of Defense and was monitored by the Air Force Office of Scientific Research.

REFERENCES

- 1. O'Connor, G. L. and Nace, H. R., J. Amer. Chem. Soc. 74, 5454 (1952).
- 2. Scala, L. C. and Dixon, G. D., Mol. Cryst. 7, 443 (1969).